	Chloride CI-	Sulfate	Carbonate	Hydroxide
Barium	1			
Calcium		D	5	2
Iron		D	O L	0
Copper		D	B	0 0
Lead			È	L

1. If two salt solutions are mixed together and no precipitate forms then reaction has occurred

eg. sodium nitrate + calcium chloride --> no reaction in the beaker

Sodium Carbonate

Nat Co3'
C 03'
Nat

Silver Chloride

Ast CIT

Ag. CO3)
(Ag. CO3)
(Ag. CO3)
(Ag. CO3)

Silve Cabinate

Silver Nitrate Sodium Chlomate

2.If two salt solutions are mixed together and a precipitate occurs then a Ktalina nas

silver nitrate+sodium chloride -->Sodium ions+Nitrate ions+silver chloride(white precipitate) we use the solubility rules to find out which ions cause the precipitate

Use the sol forms where the precipit

Anion	Cation		
	soluble (no reaction)	insoluble (precipitate forms)	
nitrates NO ₃ ⁻	all		
acetates CH₃COO⁻	all		
chlorides Cl⁻	most	Ag+ (Pb ²⁺)*	
sulfates SO ₄ ²⁻	most	Ba ² ,(Ca ²⁺)*,Pb ²⁺ ,(Ag ⁺)*	
sulfides S ²⁻	Group 1, NH₄+, Group 2	most	
hydroxides OH ⁻	Group 1, NH ₄ +, Ba ²⁺	most	
carbonates CO ₃ ²⁻	Group 1, NH ₄ ⁺	most	

barium chloride + sodium sulfate Sodive scher. de toal 185 sulfate barium chloride + potassium hydroxide barium sulfate calcium nitrate + ammonium sulfate Calcium sulfate to toal 185 + ammonium sulfate copper sulfate + ammonium sulfide copper sulfate + ammonium sulfide copper sulfate + sodium carbonate carbonate to sodium ca

Concentration and solubility

Whether a precipitate forms or not will depend on the concentration of the ions that are mixed

In the experiment the other day we used 5% salt solutions. What does that mean?

Concentration units are tricky but really important

- a) Percentage by mass (mass of sol/mass of solvent m/m) eg 5% NaCl is 5 grams of NaCl in 100 grams of solution
- b)Percentage volume (mixtures of liquids v/v) 10% ethanol in 100ml of solution
- c)Mass per volume (used in medicine) blood alcohol level of 0.02 refers to 0.020 g/ 100 mls of bloods
- d)Parts per million

Bason

Bason

Bason

Bason

Cason

Ca

Writing Ionic Equations

- 1. When writing an equation for a reaction that forms a precipitate there is no need to show spectator ions as they are still floating around in the solution
- 2. The ions that come together and form ionic bonds are the reaction ions and are the only ones you need to show in a net ionic equation
- 3. Can you think of any disadvantages of an ionic equation?

Advantage-you can see clearly which ions can be reacted together to form precipitates

Any solution containing _____ ions and Chloride ions will react to form Silver Chloride Precipitate

CHALLENGE

Go back and write net ionic equations for the precipitates in the earlier equations.

Anion	Cation	
	soluble (no reaction)	insoluble (precipitate forms)
nitrates NO ₃ ⁻	all	
acetates CH₃COO⁻	all	
chlorides Cl ⁻	most	Ag+ (Pb ²⁺)*
sulfates SO ₄ ²⁻	most	Ba ²⁺ ,(Ca ²⁺)#,Pb ²⁺ ,(Ag ⁺)#
sulfides S ²⁻	Group 1, NH₄⁺, Group 2	most
hydroxides OH ⁻	Group 1, NH ₄ +, Ba ²⁺	most
carbonates CO ₃ ²⁻	Group 1, NH₄⁺	most

