catase		Wabe		
saum	\uparrow	1	1	1
Casum		D	N	N
on		D	$\stackrel{1}{i}$	O
coper		D	B	\checkmark
${ }^{\text {Lead }}$	\downarrow	1	E	L

1. If two salt solutions are mixed together and no precipitate forms then NU reaction has occurred
eg. sodium nitrate + calcium chloride --> no reaction in the beaker

Sodivm Carbmate

Silver Chloride $\mathrm{Ag}^{+}, \mathrm{Cl}$ cí $A_{j}{ }^{+}$

Silver Nitrate SodivoChloride

2.If two salt solutions are mixed together and a precipitate occurs then a REACT NAN occurred
silver nitrate+sodium chloride -->Sodium ions+Nitrate ions+silver chloride(white precipitate) we use the solubility rules to find out which ions cause the precipitate

Concentration and solubility

Whether a precipitate forms or not will depend on the concentration of the ions that are mixed

In the experiment the other day we used 5% salt solutions. What does that mean?

High concentration

Low concentration

Concentration units are tricky but really important
a) Percentage by mass (mass of sol/mass of solvent m / m) eg $5 \% \mathrm{NaCl}$ is 5 grams of NaCl in 100 grams of solution
b)Percentage volume (mixtures of liquids v / v) 10% ethanol in 100 ml of solution c) Mass per volume (used in medicine) blood alcohol level of 0.02 refers to $0.020 \mathrm{~g} /$ 100 mls of bloods
d) Parts per million

$$
\begin{aligned}
& \mathrm{BaSO}_{4} \\
& \mathrm{Ba}_{(\mathrm{aq})}^{2+}+\mathrm{SO}_{4}^{2-} \rightarrow \text { barium sulfate }_{(\mathrm{c})} \\
& \mathrm{Ca}_{\mathrm{Cap}}^{2+}+\mathrm{SO}_{(a \mathrm{aq})}^{2-} \text { calcium sulfate cos) } \\
& \mathrm{Cu}_{(a \mathrm{a})}^{2+}+\mathrm{S}_{(49)}^{2-} \longrightarrow \text { copper sulfide } \mathrm{CUS}_{(S)}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
P .212 \\
-216
\end{array}
\end{aligned}
$$

Writing lonic Equations

1.When writing an equation for a reaction that forms a precipitate there is no need to show
spectator ions as they are still floating around in the solution
2. The ions that come together and form ionic bonds are the reaction ions and are the only ones you need to show in a net ionic equation
3.Can you think of any disadvantages of an ionic equation?

Advantage-you can see clearly which ions can be reacted together to form precipitates

$$
\text { eg. } \mathrm{Ag}+(\mathrm{aq}) \quad+\mathrm{Cl}-(\mathrm{aq}) \quad-->\mathrm{AgCl}(\mathrm{~s})
$$

Any solution containing \qquad ions and Chloride ions will react to form Silver Chloride Precipitate

CHALLENGE

Go back and write net ionic equations for the precipitates in the earlier equations.

Anion	Cation	
	soluble (no reaction)	insoluble (precipitate forms)
nitrates NO_{3}^{-}	all	
acetates $\mathrm{CH}_{3} \mathrm{COO}^{-}$	all	
chlorides Cl^{-}	most	$\mathrm{Ag}^{+}\left(\mathrm{Pb}^{2+}\right)^{*}$
sulfates SO_{4}^{2-}	most	$\mathrm{Ba}^{2+},\left(\mathrm{Ca}^{2+}\right)^{*}, \mathrm{~Pb}^{2+},\left(\mathrm{Ag}^{+}\right)^{\#}$
sulfides S^{2-}	Group 1, $\mathrm{NH}_{4}^{+}, \mathrm{Group} \mathrm{2}$	most
hydroxides OH^{-}	Group 1, $\mathrm{NH}_{4}^{+}, \mathrm{Ba}^{2+}$	most
carbonates $\mathrm{CO}_{3}{ }^{2-}$	Group 1, NH_{4}^{+}	most

and

